LINEAR ALGEBRA
1. COVARIANCE MATRIX
STEP 1:
X: [2, 3, 5, 7, 10]
Y: [6, 9, 12, 15, 18]
Step 2: Calculate the Means (μx and μy):
μx = (2 + 3 + 5 + 7 + 10) / 5 = 5.4
μy = (6 + 9 + 12 + 15 + 18) / 5 = 12
Step 3: Calculate the Covariance:
Cov(X, Y)
= Σ((xi - μx) * (yi - μy)) / (n - 1)
= (20.4 + 7.2 + 0 + 4.8 + 27.6) / (5 - 1)
= 59 / 4
≈ 14.75
Cov(X, X)
= Σ((xi - μx)^2) / (n - 1)
= ((-3.4)^2 + (-2.4)^2 + (-0.4)^2 + 1.6^2 + 4.6^2) / (5 - 1)
= 43.2 / 4
= 10.8
Cov(Y, Y)
= Σ((yi - μy)^2) / (n - 1)
= ((-6)^2 + (-3)^2 + 0^2 + 3^2 + 6^2) / (5 - 1)
= 90 / 4
= 22.5
Step 5: Assemble the Covariance Matrix:
| Cov(X, X) Cov(X, Y) |
| Cov(Y, X) Cov(Y, Y) |
Covariance matrix:
| 10.8 14.75 |
| 14.75 22.5 |